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Abstract. An instance I of the Hospitals/Residents problem (HR) comprises a set of residents (graduating medical 

students) and a set of hospitals, where each hospital has a given capacity. The residents have preferences for the 

hospitals, as do hospitals for residents. A solution of I is a stable matching, which is an assignment of residents to 

hospitals that respects the capacity constraints and preference lists in a precise way. In this paper, we consider the 

problem of deciding, given residents’ preference lists and a matching, whether there are hospital’s preference lists 

that make a given matching stable. We show that the problem is NP-complete, if we restrict the number of kinds of 

hospital’s preference lists. We also present one exact algorithm and four greedy algorithms. We implement these 

algorithms and present a computational study using random instances.  

 

1 Introduction 

 

In 1962 David Gale and Lloyd Shapley published their paper ‘College admissions and the stability of marriage’ [1], 

which was the first to formally define the Stable Marriage problem (SM), and they provide its solution. An instance 

of SM involves a set of men and a set of women. Each person ranks all members of the opposite sex in strict order 

of his/her preference. We seek to find a stable matching between the men and the women. For a matching between 

men and women, a pair of a man and a woman is called a blocking pair if both prefer each other to their current 

partners. A matching with no blocking pair is called stable. Gale and Shapley showed that every instance admits at 

least one stable matching, and proposed a polynomial time algorithm to find one, which is known as the Gale-

Shapley algorithm.  

In the same paper [1], Gale and Shapley introduced a many-to-one generalization of the Stable Marriage 

problem called the Hospitals/Residents problem (HR), referred to by the authors as the College Admissions problem. 

An instance of HR has a set of residents (i.e. graduating medical students) and a set of hospitals. Each resident 

ranks in order of preference a subset of the hospitals. Each hospital has an integral capacity, and ranks in order of 

preference those residents who ranked it. The capacity of a hospital is its number of available posts that it requires 

to fill. We seek to match each resident to an acceptable hospital, in such a way that a hospital’s capacity is never 

exceeded. Moreover the matching must be stable. A pair of a resident r and a hospital h is said to block a matching 

M for an instance of HR, and is called a blocking pair, when all the following conditions are satisfied: (i) h and r 

find each other acceptable; (ii) either r is unmatched, or prefers h to his assigned hospital; (iii) either h is under-

subscribed, or h prefers r to its worst resident assigned. A matching is stable if it admits no blocking pair. Similarly 

to SM, Gale and Shapley described a linear-time algorithm for finding a stable matching, given an instance of HR 

[3].  

To automate the process of assigning residents to hospitals, a number of countries use a centralized matching 

scheme that has at its heart an algorithm for HR and its variants [6]. For example, the US has the one of the 

largest automated schemes, namely the National Resident Matching Program (NRMP) [9]. The NRMP has been in 

operation since 1952 and allocates around 31,000 residents to hospital posts every year. Counterparts of the NRMP 

elsewhere are the Canadian Resident Matching Service (CaRMS) [7] and the Scottish Foundation Allocation 

Scheme (SFAS) [10]. And in Japan, the Japan Residency Matching Program (JRMP) has been in operation since 

2003 [8]. Similar matching schemes are also used in educational and vocational contexts.  

The matching intermediary such as NRMP, SFAS, and JRMP provides a mechanism for matching residents to 

hospitals according to the preferences expressed by both parties. The entire matching process is conducted by the 

matching intermediary under tight security. In general, there are three steps in a matching: Firstly, residents and 
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hospitals submit their rank order lists directly to the matching intermediary. Each resident submits, in the 

resident’s order of reference, a list of the hospitals where he/she has interviewed or will interview. Each hospital 

also submits, in its order of preference, a list of those residents who have had its interview. Secondly, the matching 

intermediary compares those rank order lists against each other, by using a computerized matching algorithm 

program, and obtains a stable matching. Lastly, the matching intermediary informs the residents and the hospitals 

of the matching results.  

However, there is a potential for the residents to raise a question whether the matching obtained by the 

matching intermediary is truly stable. Because the hospitals’ preference lists are not accessible to the public, the 

residents cannot check how the hospitals have ranked their applicants. So the residents may doubt whether the 

hospital’s preference lists have been intentionally fixed. For example, when a resident is matched to the hospital 

listed lowest on his/her list, he/she is not satisfied with the hospital assigned to him/her, but he/she is more likely 

to find witnesses for stability in the matching. We can solve this problem by finding hospitals’ preference lists that 

make a given matching stable. For SM, Kobayashi and Matsui have previously presented a similar issue and 

studied it in the context of strategic issue [4]: Given men’s complete preference lists and a matching, they consider 

the problem of finding women’s complete preference lists that make a given matching man-optimal stable. However, 

no research for HR has been considered before.  

In this paper, we consider the problem of deciding, given residents’ preference lists and a matching, whether 

there are hospitals’ preference lists that make a given matching stable. It is not hard to see that such preference 

lists always exist, i.e., those in which assigned residents are located at the top of each resident’s preference list. In 

this paper, we consider a restricted variant of the problem where there are only k preference lists and each 

hospital’s preference list is identical to one of them. This reflects the scenario where residents take examinations of 

k different subjects. According to the results, k preference lists are constructed (possibly, by breaking ties), and 

each hospital adopts one of them. We call this problem k-SHPL (k-Stable Hospital Preference List problem). We 

show that 1-SHPL is solvable in polynomial time and for a constant 2k , k-SHPL is NP-complete. We also 

present computational results for 2-SHPL. We provide an exponential-time exact algorithm and four greedy 

algorithms. These greedy algorithms do not necessarily output a correct answer. We implement these algorithms 

and compare their computational time and accuracy using random instances.  

This paper is organized as follows. In Section 2, we define this problem and present some notations. In Section 

3, we give complexity results for k-SHPL. In Section 4, we present one exact algorithm and four greedy algorithms, 

and present a computational study in Section 5. 

   

2 Preliminaries 

Residents’ 

preferences  

Hospitals’ capacities and  

preferences 

r1 : h2  h3   h1  

r2 : h2  h1  

r3 : h3  h2   h1 

r4 : h2  h3 

r5 : h2  h1   h3 

r6 : h3 

h1 : (3) : r2  r3  r5   r1 

h2 : (3) : r3  r5  r1  r2  r4  

h3 : (2) : r6   r4   r1  r3  r5  

Figure 1: HR instance I1. 

Residents’ 

preferences  

Matching Hospitals’ 

capacities 

r1 : h2  h3   h1  

r2 : h2  h1  

r3 : h3  h2   h1 

r4 : h2  h3 

r5 : h2  h1   h3 

r6 : h3 

(r1, h2) 

(r2, h1) 

(r3, h1) 

(r5, h2) 

(r6, h3) 

h1 : (3)  

h2 : (3)  

h3 : (2) 

Figure 2: SHPL instance I2. 

 

We first give a formal definition of HR. An instance of HR is as follows: (i) a set of residents },...,,{ 21 nrrrR  ; 

(ii) a set of hospitals },...,,{ 21 mhhhH  ; (iii) a preference list of each Rr , in which r ranks a subset of H in a 

strict order; (iv) a preference list of each Hh , in which h ranks its applicants, those residents who find that 

particular hospital acceptable, in a strict order; (v) capacities )1( mjc j  , indicating the number of posts that hj 

has. An example of HR instance is shown in Figure 1 (the hospital capacities are indicated in brackets). 

We say that a resident r finds a hospital h acceptable if r’s preference list contains h, and h finds r acceptable if 



 

h’s preference list contains r. In instance I1, r2 finds both h1 and h2 acceptable, and h1 finds r2, r3, r5 and r1 

acceptable. 

A matching M is a set of (resident, hospital) pairs HRhr ),( . In a matching M, Mhr ),( only if r and h find 

each other acceptable, and no resident is assigned to more than one hospital and no hospital is over-subscribed. If 

Mhr ),( , we say that r is assigned to h, and h is assigned to r. For any HRq  , we denote by )(qM  the set of 

assignees of q in M. When there is no obscurity we use )(rM to denote the single hospital assigned to r in M.   

A pair HRhr ),(  is said to block a matching M for an instance of HR, and is called a blocking pair, if all the 

following conditions are satisfied: (i) h and r find each other acceptable; (ii) either r is unmatched, or prefers h to 

)(rM ; (iii) either h is under-subscribed, or h prefers r to at least one of )(hM . A matching is stable if it admits no 

blocking pair.  

Let us formally define the Stable Hospital’s Preference List problem (SHPL) introduced in Section 1. An 

instance of SHPL consists of the set R of residents, the set H of hospitals, each resident’s preference list, each 

hospital’s capacity, and a matching M between R and H. It asks whether there exits hospital’s preference lists that 

make M stable. k-SHPL is a variant of SHPL in which there are at most k kinds of hospitals’ preference lists in a 

feasible solution.   

 

Problem: Stable Hospital’s Preference List problem (SHPL). 

Instance: residents, hospitals, each resident’s preference list, capacities, and a matching M.  

Question: Are there any hospitals’ preference lists that make M stable? 

 

Problem: k-Stable Hospital’s Preference List problem (k-SHPL). 

Instance: An instance of SHPL. 

Question: Are there any k kinds of hospitals’ preference lists that make M stable? 

 

3 Complexity Results 

 

3.1  Encoding a hospital’s preference list in complete bipartite digraph 

 

Figure 3: )(hD of SHPL instance I2 

In this section, we show that k-SHPL is equivalent to the problem of partitioning given digraphs into k subsets so 

that, in each subset, a digraph constructed by taking the union of digraphs in the subset does not contain a directed 

cycle. To see this, we construct a digraph )(hD  corresponding to each hospital h. )(hD is a bipartite graph  

),,()( ERLhD  where vertices of )(hD correspond to residents and L and R are bipartition of the vertices. L 

includes all the residents in )(hM , and R includes all the residents r such that (i) r and h are acceptable to each 

other and (ii) r is unassigned in M or r prefers h to )(rM . Finally, E includes all the arcs from R to L, i.e., )(hD  is 

a complete bipartite graph. Figure 3 illustrates three digraphs corresponding to the hospitals in the instance I2 

given in Figure 2. 

 We can interpret )(hD in the following way: Let Lr 1 and Rr 2 . By construction, we know that r1 is 

assigned to h but r2 is not, while r2 desires to be assigned to h. Therefore, if h prefers r2 to r1, then ),( 2 hr becomes a 

r1 

r5 

r2 

r3 

r4 

r6 
r3 

r4 

r2 

r3 

L(h1) : r2  r3 L(h2) : r1  r5  r2  r3  r4 L(h3) : r6  r3  r4 

D(h1) D(h2) D(h3) 



 

blocking pair for M. The arc Err ),( 21 stands for this situation, that is, for the matching M to be stable, r1 must 

precede r2 in h’s preference list. Hence, if a preference list of h is a linear extension of the vertices of )(hD , then h 

does not create a blocking pair for M. Consider c hospitals chhh ,...,, 21 and their corresponding digraphs 

)(),...,(),( 21 chDhDhD . Construct the digraph ),...,,( 21 chhhD by taking the union of edges in )(),...,(),( 21 chDhDhD . 

If ),...,,( 21 chhhD  does not contain a cycle, then we can have a linear list following all the edges in ),...,,( 21 chhhD . If 

hospitals chhh ,...,, 21  have this list, then there does not exist a blocking pair. On the other hand, if 

),...,,( 21 chhhD contains a cycle, there is no linear extension of the vertices of ),...,,( 21 chhhD and hence there is no 

identical list of all the hospitals chhh ,...,, 21   without creating a blocking pair.  From the above observation, we can 

conclude the equivalence we mentioned at the beginning of this section, which will be used in developing algorithms 

and proving the NP-completeness. 

 

3.2  1-SHPL is Solvable in polynomial time 

 

1-SHPL can be solved in polynomial time. A polynomial time algorithm is as follows: Given an instance of SHPL, 

we construct a digraph )( jhD corresponding to each hospital ).1( mjh j   Since 1k , there is no necessity to 

partition the digraphs into any subsets. We build one digraph ),...,,( 21 mhhhD by taking the union of edges in 

).(),...,(),( 21 mhDhDhD  Then we check whether the digraph ),...,,( 21 mhhhD contains a cycle. This algorithm can be 

implemented to run in )( 2nm time overall. 

 

Theorem 1.    1-SHPL is solvable in )( 2nm time. 

 

3.3   2-SHPL is NP-complete 

 

Theorem 2.    2-SHPL is NP-complete. 

 

Proof (Sketch).  Notice that 2-SHPL is in the class NP. Given )(hL , we can check whether there is any blocking 

pair. To show the NP-hardness, we give a reduction from Acyclic 2-Coloring problem known as NP-complete [5]. 

Given an instance of Acyclic 2-Coloring problem, we construct an instance of 2-SHPL, namely, the same number of 

residents and hospitals, each resident’s preference list, each hospital’s capacity, and a matching. We conclude that 

there are 2 kinds of hospital’s preference lists if and only if the graph is acyclic 2-colorable. □ 

 

Problem: Acyclic 2-Coloring problem. 

Instance: Directed graph ),( AVG  . 

Question: Can we color the nodes of G with 2 colors such that no monochromatic cycle occurs? 

 

3.4  k-SHPL for k ≥3 is NP-complete 

 

Theorem 3.   For a positive constant k, k-SHPL is NP-complete. 

 

Proof (Sketch).  Notice that k-SHPL is in the class NP. Given )(hL , we can check whether there is any blocking 

pair. To show the NP-hardness, we give a reduction from k-Coloring problem known as NP-complete [2]. Given an 

instance of k-Coloring problem, we construct an instance of k-SHPL, namely, the same number of residents and 

hospitals, each resident’s preference list, each hospital’s capacity, and a matching. We conclude that there are k 

kinds of hospital’s preference lists if and only if the graph is k-colorable. □ 

 

Problem: 3-Coloring problem. 

Instance: Graph ),( EVG  . 

Question: Can we color the nodes of G with k colors such that the endpoints of every edge are colored differently?  



 

4 Greedy Algorithms for 2-SHPL 

 

In this section, we describe one exact algorithm and four greedy algorithms for solving 2-SHPL. The exact 

algorithm is used to determine the accuracy of the others. We present GreedyAlg1 and GreedyAlg2, and then 

upgrade these algorithms to GreedyAlg3 and GreedyAlg4 respectively.  

 

4.1  Exact Algorithm  

 
A formal description of the exact algorithm is given by ExactAlg.  

ExactAlg )(I : )2( m  

1. construct a complete bipartite digraph )(hD for each h 

2. for ( each partition of )(hD s into two groups ) do 

3.        if ( neither of the 2 groups has any cycle ) then return YES 

4.      else goto 2 

5. return NO 

 

4.2  Greedy Algorithms 

 
A formal description of GreedyAlg1 is as follows. 

GreedyAlg1 )(I : )(m  

1. construct a complete bipartite digraph )(hD  for each h 

2. sort )(hD  randomly 

3. for ( the first )(hD  to the last )(hD ) do  

4.        add )(hD  to group A and merge   

5.        if ( group A contains a cycle ) then  

6.               delete )(hD  from group A 

7.               add )(hD  to group B and merge  

8.               if ( group B contains a cycle ) then return NO 

9. return YES 

 
A formal description of GreedyAlg2 is as follows. The key difference between GreedyAlg2 and GreedyAlg1 is 

that GreedyAlg2 repeats the main process 10 times while GreedyAlg1 repeats only once.  

GreedyAlg2 )(I : )(m  

1. construct a complete bipartite digraph )(hD  for each h 

2. for ( 10 times ) do  

3.        sort )(hD  randomly  

4.        for ( the first )(hD  to the last )(hD ) do  

5.               add )(hD  to group A and merge 

6.               if ( group A contains a cycle ) then   

7.                      delete )(hD  from group A 

8.                      add )(hD  to group B and merge 

9.                      if ( group B contains a cycle ) then goto 2 

10.        return YES  

11. return NO 

 



 

We improve GreedyAlg1 by sorting )(hD in descending order of its outdegree. A formal description of 

GreedyAlg3 is as follows.  

GreedyAlg3 )(I : )(m  

1. construct a complete bipartite digraph )(hD  for each h 

2. sort )(hD  in descending order of  its outdegree 

3. for ( the first )(hD  to the last )(hD ) do  

4.        add )(hD  to group A and merge   

5.        if ( group A contains a cycle ) then  

6.               delete )(hD  from group A 

7.               add )(hD  to group B and merge  

8.               if ( group B contains a cycle ) then return NO 

9. return YES 

 

We improve GreedyAlg2 by moving )(hD , which have caused a cycle in both of the two groups, to the head of 

the list. A formal description of GreedyAlg4 is as follows. 

GreedyAlg4 )(I : )(m  

1. construct a complete bipartite digraph )(hD  for each h 

2. sort )(hD  randomly 

3. for ( 10 times ) do  

4.        for ( the first )(hD  to the last )(hD ) ) do 

5.               add )(hD  to group A and merge 

6.               if ( group A contains a cycle ) then  

7.                      delete the )(hD  from group A 

8.                      add the )(hD  to group B and merge 

9.                      if ( group B contains a cycle) then  

10.                             update the sorting by moving )(hD  to the head and goto 4 

11.        return YES 

12. return NO 

 

Notice that the above greedy algorithms have one-sided error, i.e., if the true answer is “NO” then the greedy 

algorithms always output “NO”, but if the true answer is “YES” they may output the wrong answer. In other words, 

while a “YES” answer is guaranteed to be accurate, a “NO” answer is uncertain. 

 

5 Computational Experiments 

 

All algorithms have been coded in Java using Eclipse 2013. All the experiments were run on personal computer 

with Pentium processor with 2.0 GHz clock speed, equipped with Windows 7. Below, we first provide some details 

on the random instances. Then we subsequently discuss the computational results. 

 

5.1 Instance Generation 

 

We show how to generate instances of SHPL. An instance of SHPL is given by each resident’s preference list, 

each hospital’s capacity, and a matching. In order to generate instances, we first need to decide which data 

structures we use for all these elements and how we set each element of instance to randomized value. For the 

convenience of implementation, we assume that all instances generated in this section consist of n hospitals and 3n 

residents. 

Firstly, we use mn ranking matrix P for residents’ preference lists. The n rows and m columns of the matrix 

P represent n residents and m hospitals respectively. The element of the ith row and jth column, denoted by ],[ jiP , 



 

indicates the position of hospital hj in resident ri’s preference list. As each resident’s preference list is incomplete 

list, i.e., a resident is allowed to accept only a subset of the hospitals, we set ],[ jiP to a special null symbol if 

residents ri and hospital hj are unacceptable. 

Next, to present a matching, we use an array A of length n, where ][iA is the hospital assigned to resident ri. 

We set ][iA to a null symbol when we need to indicate that resident ri is not assigned to any hospital. Similarly, 

capacities of hospitals can be presented by an array C of length m, where ][ jC indicates the capacity of hospital hj.   

We create an instance of SHPL as follows: We first initialize to jjiP ],[ . Then, to make each resident’s 

preference list ][iP ordered differently than others, we shuffle randomly each resident’s preference list ][iP , an 

array of m hospitals. And we pick a random number s between 2 and 1m  (For simplicity, we assume that index of 

array starts from 1 instead of 0) and set elements )](,[ sjjiP  to null symbol, so that each resident’s preference 

list ][iP  forms an incomplete list of size 1s . Also, to make a matching A, we select randomly a hospital j on each 

resident’s preference list ][iP , and set ][iA to the hospital j. Finally, we set ][ jH to the number of those residents 

who are assigned to hospital hj. If an instance made in this way has a hospital h in which 0)( hM , we discard 

the instance and make another one all over again.  
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(a) Random instances (type1) 
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(b) Random instances (type2) 

 Figure 4: Proportion of YES answer  

 Figure 4(a) shows the proportion of YES instances in randomly generated 1000 instances in the above manner, 

according to the number of hospitals. As shown in Figure 4(a), the proportion of YES instances decreases gradually 

as the number of hospitals ascends stepwise. To generate harder instances, we consider such an instance generator 

that outputs YES instances and NO instances in the proportion of 50 to 50. The key difference between the random 

instances (type1) and the random instances (type2) is how to decide the size of each resident’s preference lists )(rL . 

In the random instances (type1), we decide randomly the size of each resident’s preference list, while in the random 

instances (type2), we decide by the following formula: 















3log5log

3log45log3log
)(

m
rL , ,...)5,4,3( m         (1) 

This formula is used to adjust YES instances and NO instances in the proportion of 50:50 as close as possible. 

We have obtained this formula by observing the relation of )(rL ’s size and the proportion of YES answer. Figure 

4(b) shows the proportion of YES instances of the random instances (type2). 

 

5.2 Computational Results 
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(a) Average CPU time of random instances (type1) 
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(b) Average CPU time of random instances (type2) 

Figure 5: The average CPU time of every greedy algorithm 



 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

3 4 5 6 7 8 9 10 11 12

number of hospitals  (res idents=hospitals*3)

P
ro

p
o
rt
io

n 
o
f 

Y
E
S
 a

ns
w

er
 (

%
) 

(1
00

0 
tim

es
) 

  
 

k

GreedyAlg1 GreedyAlg2 GreedyAlg3 GreedyAlg4

 
(c) Proportion of correct answer of random instances (type1) 
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(d) Proportion of correct answer of random instances (type2) 

Figure 6: The Proportion of correct answer of every greedy algorithm 

We compare the four greedy algorithms based on their CPU time and the proportion of correct answer, on random 

instances. Figure 5 shows the average CPU time of every greedy algorithm, according to the number of hospitals. As 

shown in Figure 5, the average CPU time of GreedyAlg2 increases steepest among the four. It is natural that 

GreedyAlg2 spends more CPU time than GreedyAlg1 and GreedyAlg3, because GreedyAlg2 repeats the main 

process 10 times while GreedyAlg1 and GreedyAlg3 repeat only one. However, GreedyAlg4 is faster than 

GreedyAlg3 despite the same number of times. This difference probably arises because GreedyAlg4 has better 

accuracy than GreedyAlg3. Next, we verify the accuracy of each greedy algorithm. As mentioned earlier, every 

greedy algorithm has one-sided error, i.e., they may output a wrong answer “NO” when the true answer is “YES”. 

Hence, our purpose of this experiment is to investigate the proportion that each greedy algorithm outputs the 

correct answer when it is given YES instances. To do this, we generate instances by our generator and check the 

answer by ExactAlg. We used instances which ExacAlg outputs YES. Figure 6 shows the proportion of correct 

answer of each greedy algorithm. As shown in Figure 6, The GreedyAlg4 shows the best accuracy, which is very 

close 100% even in the largest instances. The result from this study allows us to conclude that GreedyAlg4 is the 

most efficient algorithm of four greedy algorithms when all the things above are taken into consideration.  
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