ガウス過程を用いたスペクトラル BRDF の予測

引地 将大† 岩崎 慶‡

概要

コンピュータグラフィックス (CG) において,物体表面での光の反射率を表す双方向反射率分布関数 (BRDF) は写実的 な画像を生成する上で重要な要素の一つである.写実的な画像を生成するには,実世界の材質の光の反射を正確に表現する 必要があり,実際に材質での光の反射率を計測した計測 BRDF が広く使用されている.しかし計測 BRDF は,計測した材 質しか表現できないという問題がある.また近年,波長を考慮したスペクトラルレンダリングに注目が集まっており,波長 ごとに反射率を計測した計測スペクトラル BRDF が登場した.これにより,波長を考慮した写実的な画像の生成が可能と なるが,表現できる材質に限りがあるという問題点は解決されていない.そこで本研究では,ガウス過程を用いて計測スペ クトラル BRDF を 2 次元の潜在変数パラメータで表現し,潜在変数を内挿・外挿することで,未計測の材質のスペクトラ ル BRDF を予測する方法を提案する.本研究により,計測された材質のスペクトラル BRDF を正確に再現しながら,未計 測の材質のスペクトラル BRDF を予測することができる.これにより,計測した材質しか表現できない問題を克服できる.

1. はじめに

コンピュータグラフィックス (CG) の分野において, 写 実的な画像生成 (レンダリング) は重要な研究分野の 1 つ である. 写実的な画像を生成するためには,物体表面にお ける光の反射率を表す双方向反射率分布関数 (BRDF: Bidirectional Reflectance Distribution Function) [1]が重 要な役割を果たす. BRDF を表現する方法として,数式で モデル化する方法が広く用いられてきた. しかし,数式を 用いて BRDF を表現した場合,実世界の材質の複雑な反射 率分布を再現することが難しいという問題がある.

Matusik らは、現実世界の材質を実際に計測した MERL BRDF[2]を公開した. MERL BRDF を使用することで、よ り写実的な画像を生成することが可能になった. 従来、色 の三原色である赤・緑・青 (RGB) のみを考慮した RGB レ ンダリングが主流であったため、MERL BRDF においても RGB 三成分の反射率のみが計測されていた. しかしながら、 RGB レンダリングでは、光源が蛍光灯のような波長を考慮 しなければいけないシーンの場合、写実的なレンダリング ができない.

近年,ハードウェアの性能の向上に伴い,波長を考慮し たスペクトラルレンダリングに注目が集まり,映像製作で 用いられるプロダクションレンダリングソフトウェアに採 用され始めている. 2018 年に Dupuy らは, 波長ごとの反 射率を計測した計測スペクトラル BRDF[3]を公開してい る. しかしながら, MERL BRDF と同じように, レンダリ ングで表現できるのは計測した材質のみである. そのため, 計測したデータから別の材質の BRDF を予測することがで きれば, スペクトラルレンダリングの表現力向上が期待で きる.

2. 関連研究

2.1. 双方向反射率分布関数

光が物体表面に当たると、平坦に見える表面でも、ミク ロな世界では細かな面の傾きのばらつきがあるため、これ により光沢の有無などが変化する.ミクロなスケールの面 の傾きをすべて考慮していては計算コストが膨大になるた め、物体の反射特性を統計的な振る舞いとしてモデル化す る.反射特性をモデル化したものに双方向反射率分布関数 (BRDF)があり、これは点xに方向ω_tから入射してくる光 が、方向ω_oへ出射する光の反射率を表す関数である(図 2.1 参照).

[†]和歌山大学, Wakayama University ‡和歌山大学, Wakayama University

2.2. 数式を用いた BRDF 表現

レンダリングにおいて、数式を用いた材質の BRDF 表現 法は広く使われている. 紙のような材質では Lambertian モデル,金属のような材質ではマイクロファセットモデル が用いられている. Lambertian モデルは式(1),マイクロ ファセットモデルは式(2)の式で表現される.

$$f_r(\boldsymbol{\omega_i}, \boldsymbol{\omega_o}) = \frac{\rho_d}{\pi} \tag{1}$$

$$f_r(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o) = \frac{F(\boldsymbol{h}, \boldsymbol{\omega}_o) D(\boldsymbol{h}) G(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o)}{4|\boldsymbol{\omega}_i \cdot \boldsymbol{n}||\boldsymbol{\omega}_o \cdot \boldsymbol{n}|}$$
(2)

ここで、*ρ_d*は反射率、*F*はフレネル項、Dは法線分布関数、 Gはマスキング・シャドウィング項、hはω_iとω_oの中間ベク トル、nは点xにおける法線ベクトルである.これらを調整 することで、反射率分布を変化させることができるが、実 世界の材質の複雑な反射率分布を数式モデルで表現するこ とは難しい.

2.3. 計測 BRDF データセット

数式化した BRDF だけでなく,実際の材質を計測した計 測 BRDF データも広く用いられている.以下では最も関係 のある研究の計測 BRDF データセットについて述べる.

MERL BRDF: Matusik らによって,「アルミニウム」や 「プラスチック」などの 100 種類の等方性材質の光の反射 率が計測されたデータセットである. MERL BRDF は, 様々な入射方向と出射方向のペアでの RGB の光の反射率 を記録しており, 1 つの材質につき約 400 万の方向から反 射率を計測した[2][4].

計測スペクトラル BRDF: Dupuy らによって,「緑色のフ エルト」や「橙色塗装クロム」などの 51 種類の等方性材質 と,「異方性銅板」などの 11 種類の異方性材質の光の反射 率を計測したデータセットである. なお,等方性とは法線 周りに入射方向と出射方向を回転しても反射率分布が変化 しない性質,異方性とは法線方向・接線方向によって反射 率分布が変化する性質のことである(図 2.2 参照).計測ス ペクトラル BRDF は RGB の光の反射率ではなく,可視波 長の範囲を含む 360nm から 1000nm の各波長における光 の反射率を記録している[3].

図 2.2:計測スペクトラル BRDF の例.(左)等方性材質. (右) 異方性材質.

2.4. 計測 BRDF の表現力の向上

2.3 節で述べたように,計測 BRDF はあらゆる方向から RGB または各波長の反射率を計測しているため,非常に高 次元なデータとなっている.そのため,計測 BRDF の測定 値を編集し,希望の材質の BRDFを得ることは困難である.

そこで、チャーティング法[2]やユークリッド埋め込み法 [5]、主成分分析 (PCA) などを用いて BRDF の表現力を向 上させる方法が提案された.その中で、Soler らはガウス過 程と MERL BRDF を用いて未計測の材質の BRDF を予測 する方法を提案した[6].この研究により、MERL BRDF を 2次元の低次元空間で表現しながら、未計測の材質の BRDF を短時間で求めることが可能になった.しかし Soler らの 研究では、RGB の反射率を計測した MERL BRDF にしか 適応されておらず、波長ごとの反射率を計測した計測スペ クトラル BRDF には適応されていない.そこで本研究では、 計測スペクトラル BRDF に適応した場合、潜在変数の次元 はどの程度になるか、また予測に必要な時間がどの程度か を検証する.

3. 提案法

以下では、スペクトラル BRDF を予測する際に用いたガ ウス過程、ガウス過程潜在変数モデルについて述べる.

3.1. ガウス過程

ガウス過程は機械学習の一種であり,入力xに対して決ま った出力yを返すシステムf(x)を学習する.入力xとその出 力yの組(x,y)を次々と提示することで,学習させる方法を 教師あり学習と呼び,出力yを明示的に与えることなく学習 させる方法を教師なし学習と呼ぶ.そして,データに合う ように学習されたf(x)を用いて,任意の入力x,から出力y, を推定する問題を回帰問題という.ガウス過程は,関数f(x) を確率変数と見たてた確率分布である.そしてガウス過程 回帰とは,データにあうように関数f(x)を求め,出力y,を 推定する方法である[7].

3.2. ガウス過程回帰

ガウス過程回帰の最終的な目標は、与えられたデータセット(*x_i*, *y_i*)より、任意の入力*x*_{*}から出力*y*_{*}を求めることである. *N*個の観測値(入力*x*と出力*y*のペア)**D**が以下の式で与えられたとする.

 $\mathcal{D} = \{(x_0, y_0), (x_1, y_1), \cdots, (x_{N-1}, y_{N-1})\}$ (3) そして, それぞれのxとyの間に

$$\mathbf{y} = f(\mathbf{x}) \tag{4}$$

の関係があるとする.この関数fが、出力yの平均 μ_y と共分 散関数c(x, x')を要素とする共分散行列Kのガウス分布 $\mathcal{N}(\mu_y, K)$ に従うとき、関数fはガウス過程GPに従い、以下 のように表される.

$$f \sim GP\left(\boldsymbol{\mu}_{\boldsymbol{\gamma}}, c(\boldsymbol{x}, \boldsymbol{x}')\right) \tag{5}$$

多くの場合,各出力から平均値を減算することで,出力yの 平均を0に正規化することができる.正規化を行うことで 入力データから離れた地点を外挿しても,出力値を平均値 に収束させる.正規化により,式(5)を以下の式に変換する ことができる.

$$f \sim GP(0, c(\mathbf{x}, \mathbf{x}')) \tag{6}$$

 $Y = [y_0, y_1, \dots, y_{N-1}]^T$ とおけば、この出力Yはガウス分布に 従い、入力のすべてのペア (x_i, x_j) について共分散関数(カ ーネル関数)c(x, x')を用いた

$$K_{ij} = c(\boldsymbol{x}_i, \boldsymbol{x}_j) \tag{7}$$

で与えられる共分散行列Kを用いて

$$Y \sim \mathcal{N}(0, K) \tag{8}$$

が成り立つ.このとき、データに含まれない入力 x_* での出 力 y_* の値については、 $Y \models y_*$ を含めたものを新しく $Y' = [y_0, y_1, \cdots, y_{N-1}, y_*]^T$ とすれば、Y'もガウス分布に従うと考 えられるので

$$Y' \sim \mathcal{N}(0, K') \tag{9}$$

となる. すなわち,

$$\binom{Y}{\boldsymbol{y}_{*}} \sim \mathcal{N}\left(0, \begin{pmatrix} K & \boldsymbol{k}_{*} \\ \boldsymbol{k}_{*}^{T} & \boldsymbol{k}_{**} \end{pmatrix}\right)$$
(10)

が成り立つ.ここで**k***とk**は

$$\boldsymbol{k}_{*} = [c(\boldsymbol{x}_{0}, \boldsymbol{x}_{*}), c(\boldsymbol{x}_{1}, \boldsymbol{x}_{*}), \cdots, c(\boldsymbol{x}_{N-1}, \boldsymbol{x}_{*})]^{T}$$

$$k_{**} = c(\boldsymbol{x}_{*}, \boldsymbol{x}_{*})$$
(11)

で表され, **k**_{*}は学習データの入力と新しい入力**x**_{*}の類似度 (カーネル関数の値)を並べたベクトル, **k**_{**}は**x**_{*}の自分自 身との類似度である.式(10)は**y**_{*}とYの同時分布の式である ので,Yが与えられたときの**y**_{*}の条件付き確率は,ガウス分 布の要素間の条件付き確率から求められるので,

 $p(y_*|x_*, D) = \mathcal{N}(k_*^T K^{-1} Y, c(x_*, x_*) - k_*^T K^{-1} k_*)$ (12) がガウス過程の予測分布として求められる.これより, y_* の期待値が最も大きくなるときの値を予測値として出力す ればよいので,予測値 y_* は

$$\boldsymbol{k}_{*}^{T}\boldsymbol{K}^{-1}\boldsymbol{Y} \tag{13}$$

となる.最後に,式(6)で減算した平均値を足すことで,図 3.1のように予測値y_{*}を求めることができる[6][7][8].

 $y_* =$

3.3. 共分散関数

任意の入力x_{*}から出力y_{*}を求める際,式(7)と式(11)およ び式(13)より共分散行列の要素である共分散関数c(x_i,x_j) が重要な役割を果たしていることが確認できる.共分散関 数を変更することで様々な出力が得られる(図 3.2 参照) が,本研究では出力y_{*}が滑らかな変化をしながら,予測値 が近くのデータの影響しか受けないようにするために,2乗 指数関数(式(14))を用いた. $c(x,x') = \mu \delta(x,x') + e^{-||x-x'||^2/2l^2}$ (14) ここで $\mu \geq l$ はノイズフィルタリングパラメータとハイ パーパラメータとなっている. デルタ関数を用いることで, 内装は不連続になるが,予測の安定性は向上し,入力デー タの再現度も向上する.本研究では, $\mu = 10^{-4}$ で行った.

また,式(14)の共分散関数を用いた場合,出力y_{*}はハイパ ーパラメータ *l* にも依存する.*l* の値が小さいほど出力y_{*} が平均値になりやすく,*l* の値が大きいほど元データを忠 実に再現できなくなる.予測値y_{*}がトレーニングデータに 似た値を取り,かつ値の急激な変化が発生しない滑らかな 内挿を行うことができる適切なハイパーパラメータ*l* を用 いるには,以下の条件式を満たす *l* を求める.

$$\|\mathbf{y}_{*} - \mathbf{y}_{l}\| \leq \frac{e^{-1/2}\sqrt{2N}}{l}\kappa(K) \|Y\| \|\mathbf{x}_{*} - \mathbf{x}_{l}\|$$
(15)

ここで, ||■||は■がベクトルの場合 L2 ノルム (行列の場合 フロベニウスノルム), κ(K)は行列Kの条件数を表している. また, *i* は入力*x**に最も近い入力*xi*のインデックスである [6][7][8].

3.4. ガウス過程潜在変数モデル

ここまでは、入力xと出力yがわかっている場合でのガウ ス過程回帰(3.1 節でいう教師あり学習)について説明した. しかし、本研究において既知であるのは、計測 BRDF のみ であり、入力xとなるデータは未知である.そこで、入力と なる潜在変数xを出力yから作成する方法がガウス過程潜在 変数モデル(GPLVM:Gaussian Process Latent Variable Model) である. GPLVM によって作成された潜在変数xと 3.2 節で述べたガウス過程を用いて,未計測の材質のスペク トラル BRDF を予測することができる.

各出力の潜在変数を設定する際,潜在変数xは出力yの値 が似ていれば,xも似た値になると考えられる.つまり,各 出力yの各次元での値が近いほど入力となるxは近いと考え られる.ここで,各計測データy₀,y₁,…,y_{N-1}の次元dには, ある入射方向・出射方向でのある波長での反射率のデータ が格納されている.したがって,図 3.3 のように次元dごと のN次元の縦ベクトル

$$\boldsymbol{Y}^{(d)} = \left[y_0^{(d)}, y_1^{(d)}, \cdots, y_{N-1}^{(d)} \right]^T$$
(16)

からなるベクトルと表現することができる.そして,各次 元のベクトル $Y^{(d)}$ がそれぞれ,未知の入力 $X = [x_0, x_1, ..., x_{N-1}]^T$ からのガウス過程回帰によって生成され ていると仮定する. $Y^{(d)}$ が正規化されたデータを用いた場 合,各次元d = 1, ..., Dにおいて出力 $Y^{(d)}$ がガウス分布に従う 確率は,

$$\boldsymbol{Y}^{(d)} \sim \mathcal{N}(0, K) \tag{17}$$

と表すことができる.ここでは、出力Yの各次元が独立であ ると仮定しているので、データ全体Yがガウス分布に従う確 率はy₀, y₁,..., y_{N-1}の確率の積になることから、

$$p(Y|X) = \prod_{d=1}^{D} p(\mathbf{Y}^{(d)}|X) = \prod_{d=1}^{D} \mathcal{N}(\mathbf{Y}^{(d)}|0,K)$$
(18)

となる.このままでは*X*に何の仮定もおいていないため、もっとも単純に各*x*が次元数*m*の標準ガウス分布に従うと仮定すると

$$p(X) = \prod_{n=1}^{N} p(x_n)$$

$$p(x_n) = \mathcal{N}(0, I)$$
(19)

となる. ここで, *I*は*m*×*m*の単位行列である. よって, *X*から*Y*を生成する確率は

$$p(Y|X) = \prod_{d=1}^{D} \frac{exp\left(-\frac{1}{2}\mathbf{Y}^{(d)T}K^{-1}\mathbf{Y}^{(d)}\right)}{(2\pi)^{N/2}|K|^{1/2}}$$
$$= \frac{exp\left(-\frac{1}{2}\sum_{d=1}^{D}\mathbf{Y}^{(d)T}K^{-1}\mathbf{Y}^{(d)}\right)}{(2\pi)^{ND/2}|K|^{D/2}}$$
(20)
$$= \frac{exp\left(-\frac{1}{2}tr(K^{-1}YY^{T})\right)}{(2\pi)^{ND/2}|K|^{D/2}}$$

となる.ここで, $tr(\bullet)$ は行列のトレースである.よって, 式(20)を最大化することは, 観測データの相関行列 YY^T を共 分散行列の逆行列 K^{-1} ができる限り近似できるように, Kの もととなる入力 $X = [x_0, x_1, \cdots, x_{N-1}]^T$ を最適化していると 考えることができる.

式(20)の対数を取ると、観測データYの対数尤度Lは

$$L = log(p(Y|X))$$

$$= -\frac{ND}{2}\log(2\pi) - \frac{D}{2}\log|K| - \frac{1}{2}tr(K^{-1}YY^{T})$$
(21)

となる.潜在変数の初期値を求めるには,主成分分析を使用した.式(21)を最大化する潜在変数Xを求めるには,一般的には勾配法を用いるが,勾配法の計算の複雑さはNの3乗に従うので,本論文では Direct Local Search 法[9]を用い

た. このとき, ハイパーパラメータ*l*は, 潜在変数分布のス ケーリング項として働くため任意の値を用いることができ る. 本研究では, *l* = 1とした[6][7][10].

4. 評価

本章では,提案した手法によって得られた結果について 説明する.実行環境は,CPU:Intel Core i7-6700 3.40GHz, 32.0GB RAM である.1つのスペクトラル BRDF の予測に 必要な時間は約5分であった.予測時に用いたハイパーパ ラメータlは1とし,これは式(15)の条件を満たしている.

4.1. 潜在変数の分布

ガウス過程潜在変数モデルを用いて,計測スペクトラル BRDF を低次元空間に落とし込んだ結果は図 4.1 のように なる.原点付近に映り込みの少ないフェルトや紙などの材 質が分布し,この地点から離れるほど映り込みが発生し, 最も原点から離れた地点にはクロム材質などが分布した. 本研究では,潜在変数の次元数mを2にして予測を行った. 予測を行う際は,潜在変数空間内で任意の地点での座標値 をガウス過程の入力とし,予測を行う.

4.2. 再現性の検証

計測スペクトラル BRDF を予測により再構成したとき, 計測データをどれほど正確に再構成できているかについて 検証する.予測で求められたスペクトラル BRDF の値が, 計測スペクトラル BRDF とどの程度の誤差が発生している かを調べるために以下の式で計算される RMSE を用いた.

$$RMSE = \sqrt{\frac{\sum_{d=1}^{90 \times 90 \times 180 \times 195} \left(y^{(d)} - y^{(d)}_{*}\right)^{2}}{90 \times 90 \times 180}}$$
(22)

ここで, y^(d)は計測スペクトラル BRDF のd次元目の値, y_{*}^(d)は予測によって求められたスペクトラル BRDF のd次 元目の値を表している.分母に 195 を乗算していないのは, 波長のチャンネル数で割らないことで,各入射方向・出射 方向での誤差を求めるようにするためである.

図 4.2:上から順に「緑色フェルト」,「ブルーメロウ」, 「水色塗装クロム」のレンダリング画像.

以下では、「緑色フェルト」、「ブルーメロウ」、「水色塗装 クロム」の再現度について検証を行った.結果は、図 4.2 の ようになり、ほぼ同じレンダリング画像を得られているの が確認できる.また、式(22)より得られる RMSE は、緑色 フェルトが2.37027×10⁻²⁰、ブルーメロウが1.00609×

10⁻²⁵, 水色塗装クロムが1.09798×10⁻²⁵となり, ほとんど 誤差が発生していないのが確認できた.以上より, 潜在変 数の次元は2次元で十分であることが確認できる.

4.3. スペクトラル BRDF の予測の検証

図 4.3 は計測スペクトラル BRDF と予測で求められたスペクトラル BRDF を用いて作成したレンダリング画像であ

る. これより計測スペクトラル BRDF と予測スペクトラル BRDF を区別するのは非常に難しいことが確認できる. 1 行目のレンダリング結果が計測スペクトラル BRDF (左か ら順にオレンジ色フェルト,黄金色塗装)を用いた画像で, それら以外はすべて予測で求めたスペクトラル BRDFを用 いてレンダリングを行った結果画像である.よって,潜在 変数のどの地点を予測しても,写実的な材質のスペクトラ ル BRDF の予測ができ,計測スペクトラル BRDF と遜色 ないのが確認できる.

4.4. 線形補間による予測との比較

計測の材質のスペクトラル BRDF を線形補間によって求 めた場合の結果について述べる.線形補間によるスペクト ラル BRDF 予測の計算式は以下である.

y_{*} = αy₁ + (1 – α)y₂ (23) ここで,αは任意の値,y₁,y₂は計測スペクトラル BRDF 値 である.式(23)より得られたスペクトラル BRDF を用いて レンダリングを行った結果を図 4.4 に示す.

これらより線形補間法では,予測が適切に行われる場合 と行われない場合があるのが確認できる.予測が適切に行 われない場合は,異なる材質間を予測する場合で頻繁に発 生する.

5. まとめと今後の予定

本研究では計測スペクトラル BRDF とガウス過程潜在変数モデルを用いて,計測スペクトラル BRDF データを2次元の潜在変数空間に落とし込み,潜在変数の座標を入力とするガウス過程を用いて,未計測の材質のスペクトラルBRDFの予測を行った.その結果,計測スペクトラルBRDFを求めることができた.これにより,計測スペクトラルBRDFの欠点である計測した材質しか表現できない問題を克服できた.

今後の課題として、ガウス過程による予測の高速化があ げられる.提案法では、1つのスペクトラル BRDF を求め るのに必要な時間が5分と長く、さらにストレージ使用量 が100GB 近くも必要となる問題がある.この問題の解決策 としては、圧縮されたスペクトラル BRDF データをそのま ま用いることが挙げられる.これにより、計算時に使用す るメモリやストレージを削減することができ、予測に必要 な時間も短縮できると考えられる.また現在は、予測可能 な材質が等方性材質に制限されているため、異方性材質も 予測が行えるように改良する必要がある.

参考文献

- F.E. Nicodemus, J.C. Richmond, J.J. Hsia, I.W. Ginsberg, T. Limperis." Geometrical considerations and nomenclature for reflectance", Final Report National Bureau of Standards, 1977.
- [2]. W. Matusik, H. Pfister, M. Brand, L. McMillan. "A Data-Driven Reflectance Model", ACM Transactions on Graphics, Vol 22, No.3, pp.759-769, 2003.
- [3]. J. Dupuy, W. Jakob. "An Adaptive Parameterization for Efficient Material Acquisition and Rendering", ACM Transactions on Graphics, Vol 37, No. 6, pp.274.1-274.14, 2018.
- [4]. S. Rusinkiewicz. "A New Change of Variables for Efficient BRDF Representation", Eurographics, pp.11-22, 1998.
- [5]. J. Wills, S. Agarwal, D. Kriegman, S. Belongie. "Toward a perceptual space for gloss", ACM

Transactions on Graphics, Vol. 28, No.4, pp.103.1 - 103.15, 2009.

- [6]. C. Soler, K. Subr, D. Nowrouzezahrai. "A Versatile Parameterization for Measured Material Manifolds", Computer Graphics Forum, Vol. 37, No. 2, pp.135-144, 2018.
- [7]. 持橋大地,大羽成征.「ガウス過程と機械学習」,講談 社, 2019.
- [8]. C.E. Rasmussen, C. Williams. "Gaussian Processes for Machine Learning", the MIT Press, 2006
- [9]. R. Hooke, T. A. Jeeves. "Direct Search Solution of Numerical and Statistical Problems", Journal of the ACM, 1961.
- [10]. N. Lawrence. "Probabilistic non-linear principal component analysis with gaussian process latent variable models", The Journal of Machine Learning Research, 2005.